Chronic, intermittent convection-enhanced delivery devices

نویسندگان

  • Owen Lewis
  • Max Woolley
  • David Johnson
  • Anne Rosser
  • Neil U. Barua
  • Alison S. Bienemann
  • Steven S. Gill
  • Sam Evans
چکیده

BACKGROUND Intraparenchymal convection-enhanced delivery (CED) of therapeutics directly into the brain has long been endorsed as a medium through which meaningful concentrations of drug can be administered to patients, bypassing the blood brain barrier. The translation of the technology to clinic has been hindered by poor distribution not previously observed in smaller pre-clinical models. In part this was due to the larger volumes of target structures found in humans but principally the poor outcome was linked to reflux (backflow) of infusate proximally along the catheter track. Over the past 10 years, improvements have been made to the technology in the field which has led to a small number of commercially available devices containing reflux inhibiting features. NEW METHOD While these devices are currently suitable for acute or short term use, several indications would benefit from longer term repeated, intermittent administration of therapeutics (Parkinson's, Alzheimer's, Amyotrophic lateral sclerosis, Brain tumours such as Glioblastoma Multiforme (GBM) and Diffuse intrinsic Pontine Glioma (DIPG), etc.). RESULTS Despite the need for a chronically accessible platform for such indications, limited experience exists in this part of the field. COMPARISON WITH EXISTING METHOD(S) At the time of writing no commercially available clinical platform, indicated for chronic, intermittent or continuous delivery to the brain exists. CONCLUSIONS Here we review the improvements that have been made to CED devices over recent years and current state of the art for chronic infusion systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible microfluidic devices supported by biodegradable insertion scaffolds for convection-enhanced neural drug delivery.

Convection enhanced delivery (CED) can improve the spatial distribution of drugs delivered directly to the brain. In CED, drugs are infused locally into tissue through a needle or catheter inserted into brain parenchyma. Transport of the infused material is dominated by convection, which enhances drug penetration into tissue compared with diffusion mediated delivery. We have fabricated and char...

متن کامل

Convection-Enhanced Delivery of Carboplatin PLGA Nanoparticles for the Treatment of Glioblastoma

We currently use Convection-Enhanced Delivery (CED) of the platinum-based drug, carboplatin as a novel treatment strategy for high grade glioblastoma in adults and children. Although initial results show promise, carboplatin is not specifically toxic to tumour cells and has been associated with neurotoxicity at high infused concentrations in pre-clinical studies. Our treatment strategy requires...

متن کامل

Experimental evidence of intermittent convection in the edge of magnetic confinement devices.

Probe measurements in the PISCES linear device indicate the presence of plasma radially far from where it is produced. We show that this is mainly caused by large-scale structures of plasma with high radial velocity. Data from the Tore Supra tokamak show striking similarities in the shape of these intermittent events as well as the fluctuation density probability distribution and frequency spec...

متن کامل

Regression of recurrent malignant gliomas with convection-enhanced delivery of topotecan.

BACKGROUND Convection-enhanced delivery of chemotherapeutics for the treatment of malignant glioma is a technique that delivers drugs directly into a tumor and the surrounding interstitium through continuous, low-grade positive-pressure infusion. This allows high local concentrations of drug while overcoming the limitations imposed by toxicity and the blood-brain barrier in systemic therapies t...

متن کامل

Imaging of Convection Enhanced Delivery of Toxins in Humans

Drug delivery of immunotoxins to brain tumors circumventing the blood brain barrier is a significant challenge. Convection-enhanced delivery (CED) circumvents the blood brain barrier through direct intracerebral application using a hydrostatic pressure gradient to percolate therapeutic compounds throughout the interstitial spaces of infiltrated brain and tumors. The efficacy of CED is determine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Neuroscience Methods

دوره 259  شماره 

صفحات  -

تاریخ انتشار 2016